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Summary. A stereoseleetive synthesis of C(15) allyl-substituted estmne derivatives 3 and 4 has been 
accomplished. Starting with 1 as a common precursor, 3 was made available in two steps by allylmagncsium 
r@ add+on to C(17), and subsequent oxy-Cope . reatrangemenk while the epimer 4 emerged from a 

m 1,4-add~tton. The ut&y of rntcrmcdrates 3 and 4 is highlighted in the construction of 
potential estrogen receptor agonists/antagonists 5.6, and 11. 

Sauctuml variations on the steroid backbone involving C(15) have occasionally been drawn upon to arrive at key 

synthetic intermediates or fascinating drug candidates.* Not surprisingly, intriguing members of this group of D- 

ring modified steroids sre also present in natureP A literature survey of synthetic methodology currently available 

to establish a stemogenic center at C(15) revealed that ~-substituted derivatives am, in general, man readily 

prepared thau their a-counterpart~~ This imbalance primarily originates from a plethora of nucleophiles which 
enters into kinetically controlled conjugate addition to steroidal enones, like 1.5 in a completely j3-stereoselective 

manner. only in a few instances, the opposite selectivity materialized on a high level, as the cormqtonding 

Michael reaction could be run under thermodynamic controlpda The modest x-face differentiation, however, 

recently claimedlh for certain CuO-promoted 1.4-additions to 1 encourages further work on stereorational 
approaches to C( 15) alkylated steroid derivatives. 

Herein, we complemnt existing methodology by qorting fully stereocontrolled C(15) a/B-allylations in the 

esua-1,35(10)-t series and elaborate briefly on a few side-chain transformations to demonstrate the potential 

of these versatile olefk. Gur synthetic scheme exploits a strong bias of c/D ring trans-fused steroidal C(17) 

ketones to capture organot~tallic reagents on the a-face anti to the adjacent angular methyl group. Thus, 1 
affcnded a single tertiary alcohol, 2, upon treatment with three equivalents of allylmagnesium chloride (THF, 0°C) 

in 80% yield following chromatography on silica gel (hexs&ethyl acetate, 4~1). With this substrate in hand, the 

stage was set to relay stereochemistry to C(15) by au anion-accelerated suprafacial[3,3]-sigmatropic shift6 of the 

ally1 appendage residing at C(17). Gratifyingly, when 2 was exposed to potassium hy&ide/l&rown-6 in THF at 

ambient temperatum under au inert atmosphere, a smooth oxy-Cope rearrangement ensued to give the unsaturated 

ketone 3 in 91% yield after chromatographic purification on silica gel (hexane/ethyl acetate, 4~1). The problem of 

C(U) &allylation, l-4 on the other hand, was satisfactorily solved with regard to selectivity and yield utilixing 

an elegant mcent protocol ((a) THF, CuI, LiBr, CH2CHCXI~MgBr, TMSCl, -78 “C, (b) hydrochloric acid; 73%) 

due to Lipshutz and co-workers7 The assignment of stereochemistry at C(15) in compounds 3 and 4 was 

confinned by standard one- and two-dimensional NMR experiments. Readily located in the ‘H NMR spectmm 

(300 MHZ, CDCls) of 3, H(14) (6 1.36 (t, J= 10.8 Hz)) displays a triplet couphng pattern, diagnostic for two 

vicinal protons (B-H(8), B-H(15)) in a trans-diaxial arrangement. Additional evidence reflecting the close spatial 
proximity between C( 18) methyl group protons and H( 15) was provided by NOE spectra of 3. 

At this point, 5, a first target of biological interest derived from 3, was obtained by a one-pot pmcedum including 
three separate mactions all of which were effected with diisobutylaluminum hydride (toluene, DIBAH, 0-124PC, 

84%). A similar operation in the epimeric series delivered the 15&propyl analogue 6. Since estrogen receptor 
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antagonistic prop&es have been uncovewd for certain long-chain bearing aualogues of estradiol during the past 

decade,* it was of some intemst to probe the behavior of nlated C(15) substituted derivatives in this context.4h 

The syuthesis of a typical example commenced with carbonyl gtoup reduction (MeOH, THF, NaBH.+, OOC; 85%). 

-7, and protection (pyridine, AC&J, 22OC, 93%) of the resulting alcohol, 748. Subsequent oxidative 

degradation of the olefinic tenuinus t&O, THP, HzO, OsO4, NaIOd, 22°C; 63%p fumished aldehyde 9, a useful 

compouent for chain extension chemistry based on Wittig reactions. A npresentative side-chain building block 

was pnpamd in three steps by aminolysis of caprolactone (toluene, HN(n-Bu)Me, Me&, 22°C; 46%),l” 

bromiuation (CC&, Ph#, Bra, OOC, 92%), and phosphonium salt fonuation (PhsP, 16OOC). Coupling with 9 after 

ylii generation (DMSO, 77-F. Ph3Pf(C!H2)&CN(n-Bu)Me Br, t-BuOR, 22°C: 81%) pmduced a mixuue of 

isormic olefins, which was subjected to catalytic hydrogenation (EtOAc. Pd/C. Ha. 22OC; 92%) and deprotection 

(DMP, NaSEt, 120°C; 54%). 10-41." 
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3 R= a-ally1 

4 R= p-ally1 

OR3 5 R’= H. R2= a-propyl. R3= H 

6 R’= H, R2= p-propyl, R3= H 

7 R1= Me, RL a-allyl, R3= H 

RIO 
8 R1= Me, RL a-allyl, R3= AC 

9 R1= Me, RL a-CH&HO. R3= AC 

10 It*= Me, R*= a-(CH2),CON(n-Bu)Me, R3= AC 

11 R1= H, R*= a-(C!H&CON(n-Bu)Me, R3= H 
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